Laboratoire

16 Dec
16/Dec/2020

Laboratoire

Soutenance de thèse de Lianxin HU

In order to model the behavior of geometarials under complex loadings, several researches have done numerous experimental works and established relative constitutive models for decades. An important feature of granular materials is that the relationship between stress and strain especially in elastic domain is not linear, unlike the responses of typical metal or rubber. It has been also found that the stress-strain response of granular materials shows the characteristics of cross-anisotropy, as well as the non- linearities. Besides, the stress-induced anisotropy occurs expectedly during the process of disturbance on soils, for example, the loads or displacements. In this work, a new model which is a combination of Houlsby hyperelastic model and elastoplastic Plasol model was proposed. This new model took into account the non-linear response of stress and strain in both elastic and plastic domain, and the anisotropic elasticity was also well considered. Moreover, the overflow problems of plastic strain in plastic part was calibrated by a proper integration algorithm. Later, new model was verified by using numerical method and compared with laboratory experiments in axisymmetric triaxial conditions. The comparison results showed a good simulation effect of new model which just used one single set of parameters for a specific soil in different confining pressure situations. Then the analysis of new model internal variable, i.e., pressure exponent, illustrated that the value of pressure exponent which corresponds to the degree of anisotropy had an obvious effect on the stress-strain response. Moreover, this kind of effect is also affected by the density and drainage condition of samples. Basing on new model, a safety factor which refers to the second-order work criterion was adopted and tested in axisymmetric model and actual slope model. It showed that the negative value or dramatic decreasing of global normalized second-order work occurs accompanying with a local or global failure with a burst of kinetic energy.